Что лучше машиностроение или автоматизация технологических процессов. Капустин Н.М

Качество микросхем

(входной контроль 10–12 % микросхем – 1990 год, Томское объединение «Контур»)

Контрольные вопросы

1. В каких случаях автоматизация неэффективна в социально-экономическом плане?

3. Предложите основные разделы бизнес-плана для планируемой покупки и использования в цехе металлообработки токарного станка с системой ЧПУ.

4. Какие факторы являются определяющими для повышения качества и надежности выпускаемой продукции?

2. Автоматизация в машиностроении,
системы ЧПУ

Краткая классификация производственных систем следующая:

¨ производственная система – это сложная многоуровневая (иерархическая) система, которая преобразует исходные полуфабрикаты, сырье, материалы в конечный продукт, соответствующий общественному заказу;

¨ в более широком смысле: производство – это соединение ресурсов (сырья, капитала, труда и предпринимательской способности) для производства товаров и услуг;

¨ основа любого производства – технологический процесс (ТП) – определенное взаимодействие орудий труда, обслуживающей и транспортной систем;

¨ непрерывные ТП: химическая, нефтегазодобывающая и перерабатывающая, энергетика;

¨ дискретные ТП: машиностроение, раскрой материалов;

¨ непрерывно-дискретные ТП: металлургия, цементная, машиностроение и др.

За базу ТП и соответствующих систем автоматизации примем машиностроение. Именно машиностроение (процессы обработки металлов) наряду с ткацкой промышленностью первыми потребовали автоматизации. Машиностроение широко развито в Прикамье. Учтем, что системы автоматизации в различных отраслях
выполняются на единой технологической базе, по одинаковым
принципам.

Анализ технологических процессов в машиностроении показывает, что в общем цикле организации производства детали станочное время занимает в среднем не более 5 % (остальное – подготовка производства, транспортирование, пролеживание и т.д.). В ста-
ночном времени время обработки составляет только около 30 %
(остальное время позиционирование, загрузка, измерение, холостое время и др.).

Усилия, направленные на интенсификацию механической обработки, оказывают влияние лишь на небольшую часть в общем балансе цикла получения готового изделия. Тот же анализ показывает, что сокращение непроизводственных потерь времени возможно лишь на основе интеграции производства, которая позволяет, в принципе, довести станочное время в общем цикле изготовления до 90 %, машинное время в рамках станочного также до 90 %. При этом имеется в виду также интеграция производства, которая допускала бы непрерывную трехсменную эксплуатацию оборудования, в том числе и малолюдную ночную смену.



На рис. 2.1 показан баланс времени использования производственного оборудования, откуда следует, что наиболее мощным резервом повышения коэффициента использования оборудования является трехсменная работа.

Практика показала, что в принципе правильная идея – связать интеграцию с безлюдной технологией – достаточно трудноосуществима, поскольку требует решения целого комплекса сложных проблем. В числе этих проблем – резкое повышение надежности оборудования и систем управления на основе МП-х систем.

Объекты автоматизации в машиностроении:

¨ станки: токарные, фрезерные, сверлильно-расточные, шлифовальные, многоцелевые (обрабатывающий центр), зубообрабатывающие, электроэрозионные и др.;

¨ периферия станков: роботы, накопители палет, блоки инструментальных магазинов и др.;

¨ транспортные системы: робокары, конвейеры и др.

¨ накопительные системы: автоматизированные склады с кранами-штабелерами, станции комплектации и др.;

¨ вспомогательные системы: контрольно-измерительные машины, станции мойки-сушки и т.д.

Рис. 2.1. Баланс времени использования производственного
оборудования

Множество отдельных микропроцессорных систем автоматизации должны быть объединены в единую – локальную вычислительную сеть. C позиций производительности и гибкости системы автоматизации в машиностроении можно классифицировать по уровню гибкости и производительности (рис. 2.2).

Рис. 2.2. Классификация системы автоматизации в машиностроении:
x – закрепленная за оборудованием номенклатура деталей (число партий);
y – число деталей в партии; 1 – универсальные станки с ручным
управлением; 2 – станки с ЧПУ; 3 – многооперационные станки;
4 – гибкие производственные модули (ГПМ); 5 – гибкие производственные участки (ГПУ); 6 – гибкие линии, цехи; 7 – автоматические линии

Таблица 2.1

Производство станков в основных странах-производителях

Страна- производитель Станки Станки с ЧПУ/ %-ная стоимость от всех станков Роботы
СЭВ
СССР 1,6/5,2 % 8,9/24 % 21,0/47 %
Китай
США 1,9/19 % 8,9/34 % 5,0/44 % 27,1 9,4
Япония 1,5/7,8 % 22,1/50 % 35,3/70 % 116,0 46,8
ФРГ 0,8/8,3 % 4,7/28 % 14/65 % 12,4 4,8

Необходимо иметь в виду, что количество станков в машиностроении в 1,5 раза больше числа станочников. Однако потребность в станках с ЧПУ на 1990 год была не удовлетворена (табл. 2.1).

Современное состояние и ближайшие перспективы автоматизации в машиностроении связаны, прежде всего, с переходом от создания отдельных машин и агрегатов к разработке систем автоматических машин, охватывающих различные стадии производственного процесса – от заготовительных до сборочных, с оптимизацией технических решений.

Центр тяжести разработок переносится с массового на серийное производство с широким развитием автоматизации и механизации вспомогательных процессов, причем автоматизации не только технологических операций, но и функций управления.

Комплексная автоматизация базируется на непрерывном совершенствовании технических средств (от простейших механизмов до сложных электронных систем; СПУ, электронных вычислительных и управляющих машин и др.); на широком использовании общности методов и средств автоматизации на различных стадиях производственного процесса, на применении методов унификации.

Развитие автоматизации на современном этапе характерно смещение центра тяжести разработок с массового на серийное производство, составляющую основную часть машиностроительной отрасли (около 80% всей машиностроительной продукции выпускается на заводах серийного и единичного производства).

Другая характерная особенность современной автоматизации – расширение арсенала технических средств и, как следствие, многовариантность решения задач автоматизации производственных процессов.

Стратегия комплексной автоматизации машиностроительного производства как основа технической политики определяется рядом аспектов, в том числе:

1) правильным пониманием содержания и основной направленности работ по автоматизации;

2) объективной оценкой во времени перспективности и целесообразности области применения новых методов и средств автоматизации, их состоянием и взаимосвязью с известными, традиционными.

Рассмотрим эти аспекты более подробно. Автоматизация производства часто трактуется как процесс замещения функций человека устройствами и системами управления и контроля, т.е. отождествляется с внедрением автоматики. При этом считается, что технологические процессы, конструкции и машин остаются в основном прежними. Это неверно. Содержание производства составляют технологические процессы, именно в них закладываются все потенциальные возможности качества и количества выпускаемой продукции, эффективности производства, а система управления есть лишь форма реализации этих возможностей. Поэтому автоматизация производства в машиностроении представляет собой комплексную конструкторско-технологическую задачу создания новой техники, таких высокоинтенсивных технологических процессов и высокопроизводственных средств производства, которые недоступны для непосредственного выполнения человеком.

Современный токарный автомат – это комплекс технологических и конструктивно-компоновочных решений, характеризуемый многопозиционностью, одновременным функционированием десятков, а в автоматических линиях – сотен механизмов и инструментов. Создание таких систем требует решения многих задач, в том числе автоматизации транспортирования и загрузки деталей, изменения их ориентации, накопления заделов, поворота и фиксации деталей, удаления отходов и т.д. И только при этих условиях может быть эффективным применение автоматического управления.

Автоматически действующие средства производства только тогда перспективны, когда они выполняют производственные функции быстрее и лучше человека.

Сказанное не снижает значения «малой» автоматизации, т.е. оснащение неавтоматизированного оборудования механизмами загрузки и зажима деталей, устройствами для управления циклом и т.д., особенно когда такие средства являются типовыми. Однако к этой частности не сводится процесс автоматизации.

Чрезвычайную актуальность в автоматизации приобретает проблема правильной, объективной оценки и разумного внедрения новейших методов и средств автоматизации. Любое техническое новшество, сколь бы перспективным оно ни было, проходит ряд стадий: идея – опытная конструкция (способная лишь функционировать) – надежно работающая конструкция – экономически эффективная конструкция. Каждая стадия характеризуется совершенствованием параметров, которые можно свести к формуле «быстродействие – надежность – стоимость». И лишь когда эти параметры укладываются в технико-экономические допуски, данное новшество созревает для производственного внедрения. Поэтому в технической политике недопустимо как запаздывание с разработкой первичной идеи, так и реализация недостаточно созревших решений.

Один из принципиальных вопросов комплексной автоматизации – оптимальное сочетание новейших методов и средств с традиционными. В автоматических машинах и системах для массового производства широко используются принципы дифференциации и концентрации операций, совмещения их во времени, что составляет основу высокой производительности и эффективности. В подавляющем же большинстве современные станки с ЧПУ – одношпиндельные. Поэтому в условиях стабильной работы, без переналадок, производительность многошпиндельных агрегатных станков-полуавтоматов в десятки раз выше, чем многооперационных полуавтоматов, а стоимость ниже. В опытном производстве, где номенклатура изделий не повторяется, необходим широчайший диапазон переналадок технологического оборудования, который можно обеспечить лишь при использовании ЭВМ. В стабильном же производстве, с постоянной номенклатурой выпускаемой продукции, серийная обработка производится лишь потому, что масштабы выпуска не позволяют загрузить каждую единицу оборудования одними и теми же изделиями. Здесь участки из универсальных станков-полуавтоматов с ЧПУ или технологических комплексов с управлением от ЭВМ может заменить один переналаживаемый многошпиндельный агрегатный станок-полуавтомат, на котором несколько деталей обрабатываются одновременно десятками инструментов, производительность его несоразмерно выше, чем одноинструментальных станков, а переналадка значительно короче.

Поэтому выпуск одношпиндельных станков с ЧПУ с технологическими и компоновочными схемами, унаследованными от неавтоматизированного производства, следует считать правомерным лишь на ранних этапах их развития. Неизбежен массовый переход к использованию многошпиндельных и многопозиционных станков с ЧПУ, начиная с простейших, выполняющих параллельную обработку нескольких деталей по одной программе. Системы с распределительными валами, кулачками и копирами, по-видимому еще долго будут преобладающими при автоматизации управления в массовом производстве, несмотря на то, что в их конструкции мало электроники и нет адаптации. Системы с ЧП, прямого управления от ЭВМ и др. мобильны, и поэтому эффективны при автоматизации серийного, а будущем и единичного производства. Их значимость для массового производства не в замене сложившихся технических решений, а в их дополнении, в реализации невыполнимых ранее функций управления. Так, применение АСУ ТП с функциями технической и статистической диагностики работы автоматических линий должно стать основой высокопроизводительной эксплуатации линий, сокращения их простоев по техническим и организационным причинам.

Данная научная дисциплина возникла в нашем государстве в двадцатых годах прошлого века в связи с быстрым ростом отечественного машиностроения. Ее развитию способствовал широкий круг советских ученых и инженеров и новаторов производства. Возникновение ее базировалось на трудах П.Л. Чебышева, И.А. Тиме и других ученых, а также в советское время ученых - технологов: Соколовского, Кована, Маталина, Балакшина, Новикова. Дальнейшее формирование и развитие этого предмета отражено в трудах И.И. Артоболевского, В.И.Дикушина, А.П. Владзиевского, Л.Н. Кошкина, Г.А. Шаумяна и других отечественных ученых.

Автоматизация производственных процессов - одно из направлений развития народного хозяйства. Это связано с тем, что автоматизация производства открывает неограниченные возможности для производительности общественного труда. Кроме повышения производительности труда она облегчает и коренным образом меняет характер труда, делает его творческим, стирает разницу между умственным и физическим трудом.

Механизация и автоматизация позволяет повысить качество продукции и безопасность и коэффициент использования оборудования, а в некоторых случаях интенсифицировать режим работы оборудования.

Проблема автоматизации производства выдвигает также социально-экономические вопросы. В современном обществе автоматизация производства это средство получения максимальной прибыли и орудие борьбы с конкурентами. Эти и ряд других положительных факторов заставляют обращать серьезное внимание на механизацию и автоматизацию.

Реальный экономический эффект, получаемый в результате механизации и автоматизации, во многом зависит от того, в каких конкретных условиях и для решения каких производственных задач используются средства и методы механизации и автоматизации. На механизацию и, особенно, автоматизацию машиностроительного производства необходимы значительные капитальные затраты. Если объект автоматизации выбран удачно, эти затраты окупаются быстро. В короткие сроки достигается высокая экономическая эффективность, а если идти по пути «сплошной» автоматизации, то вместо экономии можно получить убытки. Поэтому каждый специалист-машиностроитель должен иметь четкое представление о технических возможностях средств механизации и автоматизации и уметь правильно их выбирать в каждом конкретном случае с наибольшей эффективностью.


2. Основные понятия и определения: механизация, автоматизация, единичная и комплексная механизация и автоматизация. Стадии автоматизации

Механизацией называется направление развития производства, при котором физический труд рабочего, связанный с выполнением производственного процесса или его составных частей, передается машине. Примерами механизации являются: использование патронов с пневматическим и гидравлическим приводом, вместо обычного винтового перемещения кулачков вручную с помощью ключа; перемещение пинолей задних бабок токарных станков, быстрый подвод суппорта или стола станка с помощью электро-, пневмо- или гидросуппортов. Механизация облегчает труд рабочего. При этом действия, направленные главным образом на управление производственным процессом, остаются за рабочим. Они включаются в цикл работы машины. Механизация может быть либо частичной, либо полной или, как ее называют, комплексной.

Частичная механизация - это механизация части движений, необходимых для осуществления производственного процесса: либо главного движения, либо вспомогательных и установочных движений, либо движений, связанных с перемещением изделий с одной позиции на другую.

Полная или комплексная механизация - механизация всех основных, вспомогательных, установочных и транспортных движений, которые выполняются по ходу производственного процесса. При комплексной механизации обслуживающий персонал осуществляет только оперативное управление производственным процессом, включение и выключение в нужные моменты требуемых механизмов и управление режимом и характером их работы.

Дальнейшее развитие механизации приводит к автоматизации производства. Т.е. автоматизация- это такое направление развития производства, при котором человек освобождается не только от тяжелого физического труда, но и от оперативного управления механизмами или машинами.

Различается частичная и комплексная автоматизация. Понятие «частичная автоматизация» связывается с осуществлением автоматизации только одного структурного компонента из числа всех систем. Например, автоматизация отдельных элементов общего цикла работы станков. Примеры этого вида автоматизации: оснащение станков загрузочными устройствами, автоматизация подвода и отвода суппорта, стола, хранение, а также уборка стружки и т.д., т.е. оснащение устройствами, частично автоматизирующими управление и обслуживание станков. Если же говорить в целом о технологическом процессе, то например, автоматизирована одна из десяти операций. Комплексная автоматизация характеризуется переводом обработки деталей, например, со станков общего назначения на автоматические линии, пролеты, цехи, а также автоматические заводы. Для этого направления характерна непрерывность обработки, причем автоматизируются обработка деталей, их контроль, транспортирование, учет, хранение, а также уборка стружки и т. д.

Примером комплексно-автоматизированного производства может служить производство подшипников качения, где изготовление подшипников, начиная от заготовки и заканчивая контролем и упаковкой, выполняется комплексом автоматизированного оборудования.

При комплексной автоматизации кроме ранее перечисленных преимуществ, свойственных автоматизации вообще, обеспечивается возможность непрерывной работы в едином потоке. Отпадает потребность в промежуточных складах, сокращается длительность цикла производства, упрощается планирование производства и учет производимой продукции. Здесь наиболее полно и эффективно сочетаются два принципа - автоматизация и непрерывность производственного процесса. Комплексная автоматизация производства - радикальное и решающее средство повышение производительности труда и качества продукции, снижение ее себестоимости.

Степень автоматизации производственных процессов может быть различной. Различают три стадии автоматизации .

На первой стадии автоматизации рабочий полностью освобождается от физического труда (во время работы машины), включая труд по управлению производственным процессом. Он осуществляет первоначальную наладку машины, наблюдает за машиной и устраняет отклонения от нормальной ее работы. Первая стадия автоматизации обеспечивается разомкнутой системой автоматического управления (не имеющей обратных связей). Примером может служить: токарно-револьверные автоматы, токарные многошпиндельные автоматы, и другие станки и машины с кулачковыми механизмами. Кулачок в этом случае обеспечивает определенную последовательность, направление, величину и скорость перемещения исполнительных органов.

Во второй стадии автоматизации используются замкнутые автоматические системы управления с обратными связями, которые не только обеспечивают выполнение заданной программы, но и автоматически, без вмешательства рабочего регулируют и поддерживают нормальные условия работы машины. Труд рабочего в этом случае сводится в основном к первоначальной наладке машины. Взять, к примеру, токарную обработку длинных валов. При токарной обработке износ резца приводит к увеличению диаметра обработки, и если прибором активного контроля измерять диаметр обработки и по результатам этих измерений автоматически вводить поправку в настройку станка (перемещать резец в нужном направлении), то будем иметь САР, которая поддерживает нормальные условия работы.

Отличительной чертой третьей стадии автоматизации является способность системы управления выполнять логические операции для выбора оптимальных условий работы машины. Помимо устройств с обратными связями такие системы управления имеют устройства для решения логических задач (счетно-решающие машины), позволяющие выполнять работу при оптимальных условиях с учетом переменности внешних и внутренних режимов работы машины. Такие машины являются самоуправляющими. Например, станки с подключенной к ней ЭВМ, оптимизирующие обработку по признаку минимальной шероховатости, или же обеспечивающие максимальный съем металла.


3. Понятия и определения: автомат, полуавтомат, ГПС, автоматическая линия

Автоматом называют рабочую машину (систему машин), при осуществлении технологического процесса на которой, все элементы рабочего цикла (рабочие и холостые ходы) выполняются автоматически. Повторение цикла осуществляется без участия человека. В простейших автоматах человек осуществляет наладку автомата и контролирует его работу. В более совершенных системах автоматически контролируется количество и качество изделия, регулируется и меняется инструмент, подаются исходные заготовки и материал, убирается стружка и др.

Полуавтоматом называют рабочую машину, цикл работы которой в конце выполняемой операции автоматически прерывается. Для возобновления цикла (пуск полуавтомата) необходимо вмешательство человека, который устанавливает и снимает заготовки, пускает станок и контролирует его работу, меняет и регулирует инструмент.

Термины и определения видов гибких производственных систем устанавливает ГОСТ 26228-84.

Гибкая производственная система (ГПС) - совокупность или отдельная единица технологического оборудования и систем обеспечения его функционирования в автоматическом режиме, обладающая свойством автоматизированной переналадки при производстве изделий произвольной номенклатуры в установленных пределах их характеристик.

ГПС по организационной структуре подразделяются на следующие уровни:

· гибкий производственный модуль - первый уровень;

· гибкая автоматизированная линия и гибкий автоматизированный участок - второй уровень;

· гибкий автоматизированный цех - третий уровень;

· гибкий автоматизированный завод - четвертый уровень;

По ступеням автоматизации ГПС подразделяются на следующие ступени:

· гибкий производственный комплекс - первая ступень;

· гибкое автоматизированное производство - вторая ступень.

Если не требуется указания уровня организационной структуры производства или ступеней автоматизации, то применяют обобщающий термин «гибкая производственная система».

Гибкий производственный модуль (ГПМ) - это гибкая производственная система, состоящая из единицы технологического оборудования, оснащенная автоматизированным устройством программного управления и средствами автоматизации технологического процесса; автономно функционирующая, осуществляющая многократные циклы и имеющая возможность встраивания в систему более высокого уровня. Частным случаем ГПМ является роботизированный технологический комплекс (РТК) при условии возможности его встраивания в систему более высокого уровня. В общем случае в ГПМ входят накопители, приспособления, спутники (палеты, устройства загрузки и выгрузки, в том числе промышленные роботы (ПР), устройства замены оснастки, удаления отходов, автоматизированного контроля, включая диагностирование, переналадку и т.д.

Гибкая автоматизированная линия (ГАЛ) - ГПС, состоящая из нескольких гибких производственных модулей, объединенных автоматизированной системой управления, в которой технологическое оборудование расположено в принятой последовательности технологических операций.

Гибкий автоматизированный участок (ГАУ) - ГПС, состоящая из нескольких гибких производственных модулей, объединенных автоматизированной системой управления, функционирующая по технологическому маршруту, в котором предусмотрена возможность изменения последовательности использования технологического оборудования.

Гибкий автоматизированный цех (ГАЦ) – ГПС, представляющая собой совокупность гибких автоматизированных линий и (или) гибких автоматизированных участков, предназначенная для изготовления изделия заданной номенклатуры.

Гибкий автоматизированный завод (ГАЗ) – ГПС, представляющая собой совокупность гибких автоматизированных цехов, предназначенная для выпуска готовых изделий в соответствии с планом основного производства.

Приведенные определения не охватывают такие термины как: автоматическая линия, автоматический участок, цех, завод. ЭНИМС предлагает следующие определения:

Линия автоматическая (ЛА) – совокупность технологического оборудования, установленного в последовательности техпроцесса обработки, соединенного автоматическим транспортом и оснащенная автоматическими загрузочно-разгрузочными устройствами и общей системой управления или несколькими взаимосвязанными системами управления.

По ступеням автоматизации различают два вида ГПС :

Гибкий производственный комплекс (ГПС) – это гибкая производственная система, состоящая из нескольких гибких производственных модулей, объединенных автоматизированной системой управления и автоматизированной транспортно-складской системой, автономно функционирующая в течение заданного интервала времени и имеющая возможность встраивания в систему более высокой ступени автоматизации.

Гибкое автоматизированное производство (ГАП) – ГПС, состоящая из одного или нескольких производственных комплексов, объединенных автоматизированной системой управления производством и транспортно-складской автоматизированной системой, и осуществляющая автоматизированный переход на изготовление новых изделий.


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Кафедра технологии автоматизированного

Машиностроения

Ю.Л.Апатов
АВТОМАТИЗАЦИЯ ПРОИЗВОДСТВЕННЫХ ПРОЦЕССОВ В МАШИНОСТРОЕНИИ (АППМ)

Конспект лекций для студентов специальности 120100 – «Технология

Машиностроения» дневной, заочной и ускоренной форм обучения.

^

Киров, 2001

Дисциплина «Автоматизация производственных процессов в маши-ностроении (АППМ)».

Составитель: к.т.н., доцент кафедры ТАМ Апатов Ю.Л.

1. Основные понятия и определения. Механизация и автоматизация производства. Автоматические и автоматизированные процессы и оборудо-вание. Степень автоматизации.

Механизация – начальная ступень при переходе от автоматизации производства, она направлена на замену ручного труда машинным, при этом в её основу положено применение отдельных устройств или приспособлений, а обьектом её служит отдельно взятая технологическая операция (меха-низированная сборка или использование пневмовинтовёрта).

^ Комплексная механизация – следующая ступень, заключающаяся в обхвате средствами миеханизации нескольких смежных техзнологических операций.

Автоматизация – савокупность мероприятий технологического и ор-ганизационного плана, направленная на эффективное управление техпроцес-сом механической обработки или сборки. При этом управлению подверга-ются режимы обработки, точность обработки, время выполнения операций и т.д., а обьектом управления является сам техпроцесс.

^ Комплексная автоматизация – высшая степень автоматизации, при ко-торой обьектом является не только техпроцесс, но и часть производственного процесса (испытания изделия, консервация, упаковка, транспортировка и т.д.).

Основным направлением современного развития автоматизации яв-ляется создание так называемых ГПС. В зависимости от степени автоматиза-ции процессы обработки деталей, да и само оборудованое подразделяют на две большие группы:

1 – Автоматизированные процессы – то есть такие процессы, которые управляются частично с использованием человека – оператора.

2 – Автоматические процессы – производимые без участия человека в качестве управляющего элемента.

2. Автоматы и полуавтоматы. Понятие о рабочем цикле. Автоматичес-кий рабочий цикл. Симметричный и асимметричный циклы, их применение.
В зависимости от степени автоматизации оборудования различают:

1 – Полуавтоматы – для их характерно применение ручной загрузки деталей на станок и использование полеавтоматического цикла работы (т.е. для повторения каждого рабочего цикла необходимо вмешательство опера-тора.

2 – Автоматы – для них характерна автозагрузка деталей и они реали-зуют автоматический цикл работы.

Рабочий цикл – отрезок времени, необходимый для срабатывания данного автомата, либо промышленного робата и т.д. при выполнении задан-ной программы. В простейшем случае он состоит из суммы времени на ос-новные технологические переходы, а также на вспомогательные перемеще-ния (инструмент относительно детали). Это так называемое неперекрывае-мое время.

Т ц = t o (м) + t в, (1)
где t o (м) – основное (или машинное) время работы машины. Оно за-трачивается непосредственно на обработку детали, т.е. на изменение её раз-меров, формы и состояния поверхности.

T в – вспомогательное (неперекрываемое)время, т.е. время когда обработка не производится. (Подвод инструмента к детали, установка детали на станке).

Схема рабочего цикла – характерристика рабочего цикла, она показы-вает порядок перемещения инструмента, характер перемещения (м/мин), а также величину этого перемещения (мм) при работе в автоматическом и по-луавтоматическом режиме.

Существует 4 схемы рабочих циклов:
1 – ^ Асимметричный рабочий цикл . Интрумент выполняет следующие
этапы:


Рисунок 1 – Асимметричный рабочий цикл в применении для операции сверления
Быстрый подвод. В этом случае сверло подходит к детали не касаясь её.

Рабочая подача.
РП = L + L 1 + L 2 (2)
Ускоренный возврат инструмента в исходное положение (быстрый отвод).
БО = РП + БП (3)
На рисунке 1 представлена схема обработки сверлением.

На схеме обозначено:

L – глубина обработки (толшина детали);

L1 – недобег инструмента, исключающий касания инструментом де-тали на ускореной подаче;

L2 – недобег, назначаемый для устранения возможных заусенцев на детали.

L1, L2 назначаются конструктивно в пределах 3-4 мм.

Указанный рабочий цикл находит наибольшее применение для таких операций как сверление, развёртывание, зенкерование и т.д.
^ 2– Симметричный рабочий цикл .
Цикл характерен для нарезания резьбы, причём перед началом медленного отвода предусматривается реверс вращения инструмента.

Примечание: схемы рабочих циклов позволяют перейти к определению времени выполнения данных переходов, зная величину подачи и величину перемещений. Рабочее перемещение назначается из техпроцесса. а само время выполнения переходов используется для расчёта времени рабочего цикла, а также в последствии для расчёта производительности станка.
РП = 20 БП = 20

МО =20 БО = 20

3 – Упрощеный рабочий цикл . Применяется в случаях, когда инст-румент удаётся расположить в непосредственной близости от конца детали.

4 – Сложный рабочий цикл . Применяется при сверлении глу-боких отверстий с периодическим отводом стружки за счёт перио-дического отвода сверла.

РП 1 = БП =

РП 3 =
БО 3 =
3. Эффективность автоматизации. Цель и задачи. Современное состо-яние и направление развития автоматизации.
Эффективность автоматизации заключается в следующем:

I – Повышается производительность механической обработки и сборки за счёт сокращения основного времени, а в большей степени – вспо-могательного.

II – Отмечается снижение трудоёмкости обработки деталей.

III – Повышается качество и однородность продукции, за счёт исключения субъективного фактора (влияния самого человека).

IV – Сокращаются занимаемые производственные площади за счёт сокращения проходов между станками и более полного использования объема здания (пространство между станками и над ними) (верхний транспорт).

V– Снижается себестоимость продукции за счёт зарплаты высвобо-ждающихся рабочих.

VI – Улучшаются условия труда, исключаются из техпроцесса утомительные и однообразные операции ранее выполнявшиеся в ручную.
Все выше перечисленные факторы являются целью мероприятий по автоматизации. К задачам автоматизации дополнительно относятся: автома-тизация транспортирования деталей, их контроль, складирование и т.п.

В настоящее время в машиностроении автоматизация получила наи-большее распространение прежде всего в крупносерийном и массовом произ-водстве (автомобиле- тракторостроение и т.д.). Последнее можно объяснить: относительной простотой оборудования, практически неизменной конструк-цией деталей и постоянством применяемой оснастки и инструмента.

В значительной степени отстаёт автоматизация мелко- и среднесерий-ного производства в следствие его особенностей. Индивидуальное или еди-ничное производство вообще не является на сегодняшний день объектом ав-томатизации. Значительные сложности при автоматизации представляет сбо-рочное производство, а именно:

I – непостоянство формы и размеров деталей поступающих на сборку (уплотнения и т.д.);

II – Чрезвычайно большое разнообразие деталей, входящих в изделие, это диктует необходимость проектирования большого числа устройств и ро-ботов.

III – Требуется очень высокая точность ориентации деталей перед их соединением.

IV – Недостаточная производительность существующих видов оборудования, которое неможет конкурировать с рабочим-сборщиком.

Современное производство большей частью (75 – 80%) является се-рийным производством. На процесс автоматизации в этих условиях влияют следующие факторы:

А – частая сменяемость деталей и конструкций изделия;

Б – постоянно сокращаются сроки выпуска этих деталей с одновре-менным увеличением номенклатуры.

Номенклатура - Количество типоразмеров деталей, проходящих через данную автоматическую линию.

В – Постоянно увеличивающиеся требования по точности деталей и качеству их обработки;

Г – Очень малая доля основного технологического времени в общем производственном цикле производства данной детали.

Рисунок 2 – Диаграмма распределения времени обработки деталей

Т1 – время всего производственного цикла получения деталей;

Т2 = Т1 ∙ 0,05 – среднее время нахождения детали на станке. Осталь-ное время расходуется на ожидание деталью очереди на обработку, транс-портировку, контроль и т.п. вспомогательные операции;

Т3 = Т2 / 3 – время непосредственно затрачиваемое на обработку де-тали, т.е. на изменение размеров и формы поверхностей, их взаимного распо-ложения и их механических свойств. Остальное время идёт на загрузку и раз-грузку детали на станок, на контроль без снятия детали со станка, на время управления станком и т.д.

Вывод: в современном производстве обьектом автоматизации могут служить не только основные технологические операции, но и все перечис-ленные вспомогательные операции. Причина – время Т3 уже предельно со-кращено и большого выигрыша при сокращении времени не даёт.
4. Пути повышения производительности труда в серийном производс-тве, особенности его автоматизации. Актуальность разработки ГПС, тре-бования, предъявляемые к ним со стороны техпроцесса.
Основным направлением автоматизации серийного производства яв-ляется создание ГПС. Их особенность в том, что это системы.состоящие из основного технологического оборудования и комплекта вспомогательного оборудования, а также переналаживемой оснастки, обьединённое общей сис-темой управления и предназначенное для получения деталей заданной но-менклатуры в заданном обьёме выпуска в заданные сроки и требуемого каче-ства. Среди ГПС выделяют две разновидности:

1 – ГАЛ – несколько единиц технологического оборудования (стан-ков) расположенных и связанных между собой транспортными устройствами строго в порядке выполнения операций.

Относительная простота конструкции таких линий.

Применяется переналадка станков на различные детали, что обеспе-чивает «гибкость» данной линии.

– Нет возможности изменить порядок обработки деталей на станках (низкая «маршрутная гибкость»)


Ст.№1

Ст.№n


2 – ГАУ – в этом случае станки расположены произвольно к мар-шруту обработки детали.

(+) Возможность изменить порядок использования оборудования (вы-сокая «маршрутная гибкость»). Этим достигается наиболее полная загрузка оборудования, а критерием выбора маршрута является минимальная перена-ладка станка.

(–) Большая занимаемая площадь (из – за)транспортных систем).

(–) Более сложные и дорогие транспортные средства (устройства).

В основе применяемого технологического оборудования для ГПС ле-жат станки с ЧПУ и промышленные роботы. Существуют более простые раз-новидности ГПС:

ГПМ – гибкий производственный модуль – одна единица технологи-ческого оборудования (многоцелевой станок), оснащённая устройством за-грузки и разгрузки деталей (промышленный робот), и имеется накопитель для заготовок (не большой ёмкости), комплект режущего инструмента (рас-положенный в магазине станка), необходимая оснастка (приспособления), контрольно-измерительные механизмы и устройства, устройства диагно-стики самого оборудования, общая единая система управления.

РТК – роботизированный технологический комплекс – одна единица промышленного робота, выполняющего основную технологическую опера-цию (сборка, сварка, зачистка и др. операции по виду инструмента), для этого он дополнительно оснащается: питателем заготовок, приспособлениями, за-хватным устройством, дополнительно ориентирующими механизмами, тре-буемым инструментом, общей системой управления (для этих функций чаще всего используют дополнительные «технологические» каналы системы управления роботом).
5. Основные количественные характеристики автоматизированных технологических процессов. Производительность механообработки и сборки. Разновидности и методика определения.

Работа и образование