Развитие аддитивных технологий. Сферы применения аддитивных технологий

Ведущие страны мира активно включаются в 3D-гонку. Так, в 2012 г. в Янгстоуне, Огайо, открылся Национальный инновационный институт аддитивного производства NAMII - первый центр аддитивных технологий из пятнадцати создаваемых в США. Машинный парк института уже насчитывает 10 аддитивных машин, три из которых являются самыми современными машинами для создания металлических деталей.

Терминология и классификация

Суть аддитивных технологий заключается в соединении материалов для создания объектов из данных 3D-модели слой за слоем. Этим они отличаются от обычных субтрактивных технологий производства, подразумевающих механическую обработку - удаление вещества из заготовки.

Аддитивные технологии классифицируют:

  • по используемым материалам (жидким, сыпучим, полимерным, металлопорошковым);
  • по наличию лазера;
  • по способу фиксирования слоя построения (тепловое воздействие, облучение ультрафиолетом или видимым светом, связующим составом);
  • по способу образования слоя.

Есть два способа формирования слоя. Первый заключается в том, что сначала насыпают на платформу порошковый материал, распределяют его роликом или ножом для создания ровного слоя материала заданной толщины. Происходит селективная обработка порошка лазером или другим способом соединения частиц порошка (плавкой или склеиванием) согласно текущему сечению CAD-модели. Плоскость построения неизменна, а часть порошка остаётся нетронутой. Этот способ называют селективным синтезом, а также селективным лазерным спеканием, если инструментом соединения является лазер. Второй способ состоит в непосредственном осаждении материала в точку подведения энергии.

Организация ASTM, занимающаяся разработкой отраслевых стандартов, разделяет 3D-аддитивные технологии на 7 категорий.

  1. Выдавливание материала. В точку построения по подогретому экструдеру подаётся пастообразный материал, представляющий собой смесь связующего и металлического порошка. Построенная сырая модель помещается в печь для того, чтобы удалить связующее и спечь порошок - так же, как это происходит в традиционных технологиях. Эта аддитивная технология реализована под марками MJS (Multiphase Jet Solidification, многофазное отверждение струи), FDM (Fused Deposition Modeling, моделирование методом послойного наплавления), FFF (Fused Filament Fabrication, производство способом наплавления нитей).
  2. Разбрызгивание материала. Например, в технологии Polyjet воск или фотополимер по многоструйной головке подается в точку построения. Эта аддитивная технология также называется Multi jetting Material.
  3. Разбрызгивание связующего. К ним относятся струйные Ink-Jet-технологии впрыскивания в зону построения не модельного материала, а связующего реагента (технология аддитивного производства ExOne).
  4. Соединение листовых представляет собой полимерную плёнку, металлическую фольгу, листы бумаги и др. Используется, например, в технологии ультразвукового аддитивного производства Fabrisonic. Тонкие пластины из металла свариваются ультразвуком, после чего излишки металла удаляются фрезерованием. Аддитивная технология здесь применяется в сочетании с субстрактивной.
  5. Фотополимеризация в ванне. Технология использует жидкие модельные материалы - фотополимерные смолы. Примером могут служить SLA-технология компании 3D Systems и DLP-технология компаний Envisiontec, Digital Light Procession.
  6. Плавка материала в заранее сформированном слое. Используется в SLS-технологиях, использующих в качестве источника энергии лазер или термоголовку (SHS компании Blueprinter).
  7. Прямое подведение энергии в место построения. Материал и энергия для его плавления поступают в точку построения одновременно. В качестве рабочего органа используется головка, оснащённая системой подвода энергии и материала. Энергия поступает в виде сконцентрированного пучка электронов (Sciaky) или луча лазера (POM, Optomec,). Иногда головка устанавливается на «руке» робота.

Эта классификация гораздо больше говорит о тонкостях аддитивных технологий, чем предыдущие.

Сферы применения

Рынок аддитивных технологий в динамике развития опережает остальные отрасли производства. Его средний ежегодный рост оценивается в 27% и, по оценке компании IDC, к 2019 г. составит 26,7 млрд долларов США по сравнению с 11 млрд в 2015 г.

Однако АТ-рынку ещё предстоит раскрыть неиспользованный потенциал в сфере производства товаров широкого потребления. До 10% средств компаний от стоимости производства товара расходуется на его прототипирование. И много компаний уже заняли данный сегмент рынка. Но остальные 90% идут в производство, поэтому создание приложений для быстрого изготовления товаров станет основным направлением развития этой отрасли в будущем.

В 2014 г. доля быстрого прототипирования на рынке аддитивных технологий хотя и уменьшилась, оставалась наибольшей - 35%, доля быстрого производства росла и достигла 31%, доля в создании инструментов оставалась осталась на уровне 25%, остальное приходилось на исследования и образование.

По отраслям экономики применение АТ-технологий распределилось так:

  • 21% - производство потребительских товаров и электроники;
  • 20% - автомобилестроение;
  • 15% - медицина, включая стоматологию;
  • 12% - авиастроение и космическая отрасль производства;
  • 11% - производство средств производства;
  • 8% - военная техника;
  • 8% - образование;
  • 3% - строительство.

Любители и профессионалы

Рынок АТ-технологий разделяется на любительский и профессиональный. Любительский рынок включает 3D-принтеры и их обслуживание, которое включает сервис, расходные материалы, программное обеспечение, и рассчитан на отдельных энтузиастов, сферу образования и визуализацию идей и облегчения коммуникации на начальной стадии развития нового бизнеса.

Профессиональные 3D-принтеры дорогостоящи и подходят для расширенного воспроизводства. У них большая зона построения, производительность, точность, надёжность, расширен ассортимент модельных материалов. Эти машины на порядок сложнее и требуют освоения особых навыков работы с самими устройствами, с модельными материалами и программным обеспечением. Как правило, оператором профессиональной машины становится специалист по аддитивным технологиям с высшим техническим образованием.

Аддитивные технологии в 2015 году

Согласно отчёту Wohlers Report 2015, с 1988 по 2014 г. в мире было установлено 79 602 промышленных 3D-принтера. При этом 38,1% устройств стоимостью более 5 тыс. долларов США приходится на США, 9,3% - на Японию, 9,2% - на Китай, и 8,7% - на Германию. Остальные страны мира находятся в значительном отрыве от лидеров. С 2007 по 2014 годовой объём продаж настольных принтеров вырос с 66 до 139 584 устройств. В 2014 г. 91,6% продаж приходился на настольные 3D-принтеры и 8,4% - на промышленные установки аддитивного производства, прибыль от которых, однако, составила 86,6% от общего объёма, или 1,12 млрд долларов США в абсолютном выражении. Настольные машины довольствовались 173,2 млн долларов США и 13,4%. В 2016 г. ожидается рост продаж до 7,3 млрд долларов США, в 2018 г. - 12,7 млрд, в 2020 г. рынок достигнет 21,2 млрд долларов.

Согласно Wohlers, FDM-технология превалирует, насчитывая около 300 брендов по всему миру, ежедневно пополняясь новыми модификациями. Некоторые из них продаются только локально, поэтому очень сложно, если вообще возможно, найти информацию о количестве брендов выпускаемых 3D-принтеров. С уверенностью можно сказать, что их количество на рынке увеличивается с каждым днём. Наблюдается большое разнообразие в размерах и применяемых технологиях. Например, берлинская компания BigRep производит огромный FDM-принтер под названием BigRep ONE.2 по цене 36 тыс. евро, способный печатать объекты размером до 900 х 1055 х 1100 мм с разрешением 100-1000 микрон, двумя экструдерами и возможностью использовать разные материалы.

Промышленность - за

Авиационная промышленность усиленно инвестирует в аддитивное производство. Применение аддитивных технологий позволит снизить расход материалов, затрачиваемых на изготовление деталей, в 10 раз. Ожидается, что компания GE Aviation будет ежегодно печатать 40 тыс. форсунок. А компания Airbus к 2018 г. собирается печатать до 30 т деталей ежемесячно. Компания отмечает значительный прогресс в характеристиках произведённых таким способом деталей по сравнению с традиционным. Оказалось, что кронштейн, который был рассчитан на 2,3 т нагрузки, в действительности может выдерживать нагрузку до 14 т при снижении его веса вдвое. Кроме того, компания печатает детали из алюминиевого листа и топливные коннекторы. В самолётах Airbus насчитывается 60 тыс. частей, напечатанных на 3D-принтерах Fortus компании Stratasys. Другие компании авиакосмической индустрии также используют технологии аддитивного производства. Среди них: Bell Helicopter, BAE Systems, Bombardier, Boeing, Embraer, Honeywell Aerospace, General Dynamics, Northrop Grumman, Raytheon, Pratt & Whitney, Rolls-Royce и SpaceX.

Цифровые аддитивные технологии уже используются в производстве разнообразных потребительских товаров. Компания Materialise, предоставляющая услуги аддитивного производства, сотрудничает с компанией Hoet Eyeware в изготовлении очков для коррекции зрения и солнечных очков. 3D-модели предоставляются множеством облачных сервисов. Только компании 3D Warehouse и Sketchup предлагают 2,7 млн образцов. Не остаётся в стороне и индустрия моды. RS Print использует систему, измеряющую давление подошвы, для печати индивидуальных стелек. Дизайнеры экспериментируют с бикини, обувью и платьями.

Быстрое прототипирование

Под быстрым прототипированием понимают создание прототипа изделия за максимально короткий срок. Оно входит в число основных применений технологий аддитивного производства. Прототип - это прообраз изделия, необходимый для оптимизации формы детали, оценки её эргономики, проверки возможности сборки и правильности компоновочных решений. Вот почему сокращение срока изготовления детали позволяет значительно сократить время разработки. Также прототип может являться моделью, предназначенной для проведения аэро- и гидродинамических испытаний или проверки функциональности деталей корпуса бытовой и медицинской техники. Много прототипов создаётся в качестве поисковых дизайнерских моделей с нюансами в конфигурации, цветовой гамме раскраски и т. д. Для быстрого прототипирования используются недорогие 3D-принтеры.

Быстрое производство

Аддитивные технологии в промышленности имеют большие перспективы. Малосерийное производство изделий со сложной геометрией и из специфических материалов распространено в судостроении, энергетическом машиностроении, восстановительной хирургии и дентальной медицине, аэрокосмической промышленности. Непосредственное выращивание изделий из металла здесь мотивировано экономической целесообразностью, так как этот оказался менее затратным. С использованием аддитивных технологий производят рабочие органы турбин и валов, импланты и эндопротезы, запасные части для автомобилей и самолётов.

Развитию быстрого производства способствовало и значительное расширение числа доступных металлопорошковых материалов. Если в 2000 годах насчитывалось 5-6 видов порошков, то сейчас предлагается широкая номенклатура, исчисляемая десятками композиций от конструкционных сталей до драгоценных металлов и жаропрочных сплавов.

Перспективны и аддитивные технологии в машиностроении, где их можно использовать при изготовлении инструментов иприспособлений для серийного производства - вставок для термопласт-автоматов, пресс-форм, шаблонов.

Ultimaker 2 - лучший 3D-принтер 2016 года

По мнению журнала CHIP, который провёл тестирование и сравнил характеристики бытовых 3D-принтеров, лучшими принтерами 2016 года являются модели Ultimaker 2 компании Ultimaker, Reniforce RF1000 компании Conrad и Replicator Desktop 3D Printer компании MakerBot.

Ultimaker 2+ в его улучшенной модели использует технологию моделирования методом наплавления. 3D-принтер отличается наименьшей толщиной слоя, равной 0,02 мм, небольшим временем расчёта, низкой стоимостью печати (2600 руб за 1 кг материала). Основные характеристики:

  • размер рабочей камеры - 223 х 223 х 305 мм;
  • вес - 12,3 кг;
  • размер головки - 0,25/0,4/0,6/0,8 мм;
  • температура головки - 180-260°C;
  • разрешение слоя - 150-60/200-20/400-20/600-20 микрон;
  • скорость печати - 8-24 мм 3 /с;
  • точность XYZ - 12,5-12,55 микрон;
  • материал - PLA, ABS, CPE диаметром 2,85 мм;
  • программное обеспечение - Cura;
  • поддерживаемые типы файлов - STL, OBJ, AMF;
  • - 221 Вт;
  • цена - 1 895 евро базовая модель и 2 495 евро расширенная.

По отзывам покупателей, принтер лёгок в установке и использовании. Отмечают высокое разрешение, саморегулирующееся ложе, большое разнообразие используемого материала, использование открытого программного обеспечения. К недостаткам принтера относят открытую конструкцию принтера, которая может привести к ожогу горячим материалом.

LulzBot Mini 3D Printer

В обзоре журнала PC Magazine Ultimaker 2 и Replicator Desktop 3D Printer также вошли в тройку лучших, но здесь на первом месте оказался принтер LulzBot Mini 3D Printer. Его спецификации таковы:

  • размер рабочей камеры - 152 х 152 х 158 мм;
  • вес - 8,55 кг;
  • температура головки - 300°C;
  • толщина слоя - 0,05-0,5 мм;
  • скорость печати - 275 мм/с при высоте слоя 0,18 мм;
  • материал - PLA, ABS, HIPS, PVA, PETT, полиэстер, нейлон, поликарбонат, PETG, PCTE, PC-ABS, и др. диаметром 3 мм;
  • программное обеспечение - Cura, OctoPrint, BotQueue, Slic3r, Printrun, MatterControl и др.;
  • потребляемая мощность - 300 Вт;
  • цена - 1 250 долларов США.

Sciaky EBAM 300

Одной из лучших промышленных машин аддитивного производства является EBAM 300 компании Sciaky. Электронно-лучевая пушка наносит слои металла со скоростью до 9 кг в час.

  • размер рабочей камеры - 5791 х 1219 х 1219 мм;
  • давление вакуумной камеры - 1х10 -4 Тор;
  • потребляемая мощность - до 42 кВт при напряжении 60 кВ;
  • технология - экструзия;
  • материал - титан и сплавы титана, тантал, инконель, вольфрам, ниобий, нержавеющая сталь, алюминий, сталь, сплав меди с никелем (70/30 и 30/70);
  • максимальный объём - 8605,2 л;
  • цена - 250 тыс. долларов США.

Аддитивные технологии в России

Машины промышленного класса в России не выпускаются. Пока только ведутся разработки в "Росатоме", лазерном центре МГТУ им. Баумана, университете «Станкин», политехническом университете Петербурга, Уральском федеральном университете. «Воронежсельиммаш», выпускающий учебно-бытовые 3D-принтеры «Альфа», разрабатывает промышленную аддитивную установку.

Такая же ситуация и с расходными материалами. Лидером разработки порошков и порошковых композиций в России является ВИАМ. Им производится порошок для аддитивных технологий, использующийся при восстановлении лопаток турбин, по заказу пермского «Авиадвигателя». Прогресс есть и у Всероссийского института лёгких сплавов (ВИЛС). Разработки ведутся различными инжиниринговыми центрами по всей Российской Федерации. "Ростех", Уральское отделение РАН, УрФУ ведут свои разработки. Но все они не способны удовлетворить даже небольшой спрос в 20 т порошка в год.

В связи с этим правительство поручило Минобрнауке, Минэкономразвитию, Минпромторгу, Минкомсвязи, РАН, ФАНО, "Роскосмосу", "Росатому", "Росстандарту", институтам развития создать согласованную программу разработок и исследований. Для этого предлагается выделить дополнительные бюджетные ассигнования, а также рассмотреть возможности софинансирования за счёт средств ФНБ и других источников. Рекомендовано поддержать новые в т. ч. аддитивные, РВК, "Роснано", фонду «Сколково», экспортному агентству "ЭКСАР", "Внешэкономбанку". Также правительство в лице Минпромторга подготовит раздел государственной программы по развитию и повышению конкурентоспособности промышленности.

Как известно, существует несколько методов 3D печати, однако все они являются производными аддитивной технологии производства изделий. Вне зависимости от того, какой 3D принтер вы используете, построение заготовки осуществляется путем послойного добавления сырья. Несмотря на то, что термин Additive Manufacturing используется отечественными инженерами очень редко, технологии послойного синтеза фактически оккупировали современную промышленность.

Экскурс в прошлое Additive Manufacturing

Цифровое производство нашло свое применение в медицине, космонавтике, производстве готовой продукции и прототипировании. Хотя 3D печать принято считать одним из главных открытий двадцать первого века, в действительности аддитивные технологии появились на несколько десятилетий раньше.

Родоначальником отрасли стал Чарльз Халл, основатель компании 3D Systems. В 1986 году инженер собрал первый в мире стереолитографический 3D-принтер, благодаря чему цифровые технологии сделали огромный рывок вперед. Приблизительно в то же время Скотт Крамп, позже основавший компанию Stratasys, выпустил первый в мире FDМ-аппарат. С тех пор, рынок трехмерной печати стал стремительно расти и пополняться новыми моделями уникального печатного оборудования.

Первое время обе технологии SLA и FDM развивались бок обок исключительно в направлении промышленного производства, однако в 1995 году назрел перелом, сделавший аддитивные методы изготовления продукции общедоступными. Студенты Массачусетского технологического института, Джим Бредт и Тим Андерсон, внедрили технологию послойного синтеза материала в корпус обычного настольного принтера. Именно так была основана компания Z Corporation, долгое время считавшаяся лидером в сфере бытовой печати объемных фигур.

Технология аддитивного производства — Эпоха инноваций

В наши дни AF-технологии используются повсеместно: научно-исследовательские организации с их помощью создают уникальные материалы и ткани, промышленные гиганты используют 3D принтеры для ускорения прототипирования новой продукции, архитектурные и конструкторские бюро нашли в 3D печати нескончаемый строительный потенциал, в то время как дизайн-студии буквально вдохнули новую жизнь в дизайнерский бизнес благодаря аддитивным машинам.

Наиболее точной аддитивной технологией считается стереолитография – методом поэтапного послойного отверждения жидкого фотополимера лазером. SLA принтеры используются преимущественно для изготовления прототипов, макетов и дизайнерских компонентов повышенной точности с высоким уровнем детализации.

Селективное лазерное спекание изначально появилось, как усовершенствованный метод отверждения жидкого фотополимера. SLS-технология позволяет в качестве чернил использовать порошкообразные материалы. Современные SLS-принтеры способны работать с керамической глиной, металлическим порошком, цементом и сложными полимерами.

В литейной отрасли недавно появились PolyJet-аппараты, работающие по классической AF-технологии. Они оборудованы струйными печатными головками, заправленными быстро-застывающим материалом. На сегодняшний день InkJet 3D принтеры нешироко распространены, однако не исключено, что уже через несколько лет трехмерная струйная печать станет столь же распространена, как и классические печатные устройства. Первопроходцем в данной отрасли стала компания ExOne с ее прототипирующей машиной S-Max.

Самыми дешевыми по-прежнему остаются FDM-принтеры – устройства, создающие трехмерные объекты путем послойного наплавления филамента. Наиболее распространенными принтерами данного типа остаются аппараты, печатающие расплавленной пластиковой нитью. Они могут оснащаться одной или несколькими печатными головками, внутри которых находится нагревательный элемент.

Большинство аддитивных принтеров, печатающих пластиком, способны создавать только одноцветные фигуры, однако в последнее время на рынке трехмерной печати появились машины, использующие одновременно несколько видов филамента. Данное новшество позволяет создать цветные объекты.

Перспективы AF-технологии

На данный момент рынок трехмерной печати далек от перенасыщения. Аналитики отрасли сходятся во мнении, что аддитивные технологии ждет радужное будущее. Уже сегодня научно-исследовательские центры, занижающиеся AF-разработками, получают огромные финансовые вливания от оборонного комплекса и медицинских государственных институтов, что не дает усомниться в точности экспертных прогнозов!

Цифровое производство с использованием аддитивного метода заключается в послойном создании объекта любой сложности. Аддитивные технологии принципиально отличаются от тех, которыми пользовались до недавнего времени. Их главное отличие в том, что они являются не вычитающими, как, к примеру, метод ЧПУ обработки, а собирательными. Иными словами, происходит собирание изделия из изготовленных порошковой композицией деталей. По сравнению с техникой литья, штамповки или обработки ЧПУ данная технология повышает производительность до тридцати раз, но самое главное, что она дает возможность получить детали, которые традиционными способами было невозможно создать.

Инновационные 3D-аддитивные технологии позволяют создавать модели любых форм и размеров, так как послойной процесс синтеза происходит слой за слоем. Данный способ производства пользуется таким методом, как прототипирование. Этодает возможность создавать не готовый объект, который можно использовать для конкретных целей, а его прототип, позволяющий оценивать возможности и характеристики модели, ее внешние данные и т. д.

Прототипы можно представлять заказчикам, а такжеиспользовать в маркетинговых целях. К примеру, на автомобильных выставках часто используются модели, созданные с помощью быстрого прототипирования, для того чтобы представить их потенциальным заказчикам. Данная технология позволяет производить прототипы быстро,а главное - недорого по сравнению со стандартными методами производства.

Технологии аддитивного производства широко используются для уменьшения затрат при проектировании за счет определения возможных ошибок на ранних стадиях проектирования. Кроме того, данная технология сокращает время выхода продукта на рынок за счет усиления связи между заказчиком и проектировщиком. Она практически полностью исключает трудоемкий и длительный этап изготовления опытных образцов.

История развития и сфера применения 3D-аддитивных технологий

Многие считают объемную печать изобретением 21 столетия, однако техника аддитивной печати зародилась еще в восьмидесятых годах прошлого века. И ее отцом считают Ч. Халла - человека, сконструировавшего первый стереолитографический 3D-принтер, работающий на SLA-технологии. Вскоре другой инженер - С. Крамп смог спроектировать и создать FDМ-принтер. И, несмотря на то, что данные технологии печати немного отличаются друг от друга, их объединяет один принцип - послойное выращивание трехмерной модели. К концу девяностых годов обе технологии стали применяться в промышленности. Чуть позже 3D-технология была внедрена двумя студентами Массачусетского института в настольные принтеры, и сегодня аддитивные технологии, технологии 3D-моделирования широко используют не только в производстве, но и в быту.

На данный момент современные технологии цифрового производства применяются в строительстве, архитектуре, медицине, космонавтике, машиностроении и других сферах деятельности. Так, например, аддитивные технологии в машиностроении позволяют создавать качественные прототипы моделей, помогающих изучить все характеристики будущего изделия или агрегата. При создании прототипов чаще всего применяется стереолитографический метод AF-печати, при котором слои жидкого полимера отвердевают благодаря использованию лазера. Методика позволяет получать прототипы сложнейших объектов с множеством мелких элементов, в том числе нестандартной формы.

Какие задачи решает применение аддитивных технологий на цифровом производстве?

Интегрированная компьютерная цифровая система управления производством включает в себя применение средств численного моделирования, трехмерной (3D) визуализации, инженерного анализа и совместной работы, предназначенных для разработки конструкции изделий и технологических процессов их изготовления.

Проектирование цифрового производства- это концепция технологической подготовки производства в единой виртуальной среде с помощью инструментов планирования, проверки и моделирования производственных процессов. Технологии цифрового производства - это, прежде всего, процессы перевода цифрового дизайна в физический объект.

Применение аддитивных технологий решает такие задачи цифровых производств, какмодернизация и автоматизация действующих и проектирование новых эффективных машиностроительных производств различного назначения, средств и систем их оснащения, а также производственных и технологических процессов с использованием автоматизированных систем технологической подготовки производства.

Аддитивные технологии находят активное применение в энергомашиностроении, приборостроении, авиационной промышленности , космической индустрии, там, где высока потребность в изделиях сложной геометрии. В России с аддитивными технологиями познакомилось уже немало предприятий. Предлагаем вашему вниманию материал из альманаха «Управление производством» , в котором описывается несколько примеров эффективного внедрения 3D-печати.

Аддитивные технологии открыли возможность изготовления деталей любой сложности и геометрии без технологических ограничений. Геометрию детали можно менять еще на стадии проектирования и испытания.

Подготовка файлов для печати осуществляется на компьютерах со стандартным программным обеспечением , в работу принимаются файлы формата STL. Это широко используемый сегодня формат хранения трехмерных объектов для стереолитографических 3D-принтеров. Инвестиции в проект составили порядка 60 млн рублей.

Александр Зданевич, ИТ-директор НПК «Объединенная Вагонная Компания»: «Технологии аддитивной печати прогрессируют, и, вероятнее всего, уже в ближайшем будущем они изменят лицо целого ряда индустрий. Главным образом это касается предприятий, на которых выпускаются штучные товары под конкретный заказ. С массовым производством дело обстоит сложнее, хотя разные типы 3D-принтеров уже сейчас находят применение в данной области.


Существует множество технологий объемного синтеза. Одной из перспективных для промышленного внедрения является . Процесс можно разделить на два этапа. На первом формируется слой построения в виде равномерно распределенного по поверхности рабочей платформы жидкого фотополимера . Затем происходит выборочное отверждение участков данного слоя в соответствии с текущим сечением построенной на компьютере 3D-модели.

Применительно к железнодорожному машиностроению данную технологию можно использовать на этапе подготовки литейного производства, в частности, при производстве комплекта литейной оснастки. Один и тот же комплект оснастки, уникальный под каждую отливку, используется на протяжении тысяч циклов производства соответствующих литейных форм.

От соблюденной в процессе изготовления комплекта оснастки точности всех предусмотренных конструкторами параметров напрямую зависит качество конечного изделия. Традиционный способ изготовления комплекта оснастки путем механической обработки материалов (металла, пластика, иногда и дерева) весьма трудоемок и длителен (подчас занимает до нескольких месяцев), при этом чувствителен к ошибкам.

В «отпечатанные» модели можно встроить и другие узлы и агрегаты. Трехмерная печать полностью окупается за счет высокой скорости изготовления прототипов, а также за счет «доработки на столе» прямо в ОГК, которая экономит уйму времени и денег, нежели изготовление натурных образцов в «железе» на производстве.

Значительную работу по продвижению аддитивных технологий проводит Госкорпорация «Росатом» . Руководство уверено, что скоро в госкорпорации будут присутствовать все компоненты «цифрового производства» – от разработки материалов, оборудования, технологий до производства изделий. В отрасли реализуется программа по аддитивным технологиям, она состоит из подразделов: технология, сырье, оборудование, стандартизация. Разработкой технологий производства металлических порошков для 3D-печати в Росатоме занимаются три института: «Гиредмет», ВНИИХТ, ВНИИНМ. Одновременно ведется работа по созданию опытного образца 3D-принтера для трехмерной печати металлических и композитных изделий. Росатом планирует представить образец уже к концу 2017 года.

Трехмерная печать полностью окупается за счет высокой скорости изготовления прототипов, а также за счет «доработки на столе» прямо в ОГК, которая экономит уйму времени и денег, нежели изготовление натурных образцов в «железе» на производстве.

«К началу 2018 года мы должны весь цикл по аддитивным технологиям внутри Росатома замкнуть. Нам нужен еще год, чтобы запустить свой собственный пилотный образец установки, и примерно столько же – для того, чтобы договориться со всеми сторонами, которые обеспечивают используемую нормативную составляющую», – рассказал Алексей Дуб.

В структуре Росатома аддитивные технологии развиваются в топливной компании «ТВЭЛ», которая активно сотрудничает с созданным при УрФУ региональным инжиниринговым центром, работая над созданием российского 3D-принтера. Для Уральского электрохимического комбината и его предприятий порошковая металлургия не новинка. Например, на заводе электрохимических преобразователей порошки применялись при производстве фильтров для газовой диффузии урана при разделении изотопов, также для припоев и поверхностного напыления.

В научно-образовательном центре «Современные производственные технологии» Томского политеха

Одним из первопроходцев в области лазерных принтеров можно назвать научно-образовательный центр «Современные производственные технологии» Томского политехнического университета . Он укомплектован принтером электронно-лучевого сплавления (электронно-лучевым), лазерным принтером, принтерами, печатающими армированными композитами, а также ультразвуковым томографом, осуществляющим здесь же, «у станка», неразрушающий контроль готовых изделий. Специалисты центра изготавливают АМ-установки, разрабатывают программное обеспечение к ним и намерены продвинуться дальше «лаборатории».

В центре аддитивных технологий ТПУ настроен весь производственный цикл – от идеи до реализации готового изделия. Можно произвести и протестировать детали для обшивки космических кораблей, импланты для черепно-лицевой хирургии, изделия сложной формы для и многое другое, а также создать новые цифровые установки, например, для печати инструментов на МКС. «С помощью наших уникальных технологий мы можем создавать импортозамещающую продукцию, которая в разы дешевле импортных аналогов, при этом по качеству не хуже», – уверен директор центра Василий Федоров.

У развития аддитивных технологий есть и сдерживающие факторы.

  • Во-первых, высокая стоимость технологии (оборудования и материала), впрочем в процессе развития технологий цена постепенно снижается.
  • Во-вторых, нехватка квалифицированных, знающих технологию кадров.
  • В-третьих, недостаточная освоенность, отсутствие метрологического обеспечения вызывает опасения при производстве деталей высокой важности.
  • АМ-процессы (Additive Manufacturing) пока не интегрированы в технологию изготовления изделий. «Понятно, что любой ответственный конструктор не поставит в ответственное изделие деталь, не зная при этом, сколько она прослужит», – прокомментировал Алексей Дуб.
  • Важной задачей является необходимость разработки системы сертификации и стандартизации аддитивных изделий, технологических процессов, порошков и композиций. Для решения этих вопросов при Росстандарте был сформирован технический комитет, который ведет работу по созданию нормативной документации в сфере аддитивных технологий.
3D-принтинг начинает распространяться в мире, и Россия не должна отставать в этой области. Применение данных технологий позволяет удешевить изделие, ускорить его проектирование и производство.

– глава Минпромторга Денис Мантуров

Заключение

Популярность неуклонно растет. Хотя суммарный объем мирового рынка относительно невелик (порядка 6 млрд долларов), ежегодные темпы роста не могут не впечатлять – в среднем 20-30%. Впрочем единогласия в оценке роли аддитивных технологий в промышленности все еще нет: одни говорят, что внедрение методов 3D-печати приведет к закату промышленности в традиционном смысле, другие – что трехмерные принтеры станут лишь одним из элементов производственных схем. Но несмотря на все существующие разногласия, большие перспективы аддитивных технологий в промышленности невозможно отрицать.

Непосредственное выращивание изделий со сложной геометрией и из специфических материалов оказывается весьма выгодным с экономической точки зрения. Оно позволяет экономить материал, время, снижает риск ошибок. 3D-принтеры перестали быть «дорогой игрушкой», сегодня они занимают полноправное место среди ключевых технологий

Бухгалтерский учет